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Abstract 

We propose (L model of extended inflation which makes use of the non- 

linear realization of scale invariance involving the dilaton coupled to an in- 

flaton field whose potential admits a metastable ground state. The resulting 

theory resembles the Jordan-Brans-Dicke version of extended inflation. How- 

ever, quantum effects, in the form of the conformal anomaly, generate a mass 

for the dilaton, thus allowing our model to evade the problems of the original 

version of extended inflation. We show that extended inflation can occur for 

a wide range of inflaton potentials with no fine-tuning of dimensionless pa- 

rameters required. Furthermore, we also find that it is quite natural for the 

extended inflation period to be followed by an epoch of alow-rollover inflation 

as the dilaton settles down to the minimum of its induced potential. 
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I. INTRODUCTION 

Until recently, the usual methods for implementing inflation involved either “new” ore 

“chaotic”s models. In both models inflation occured during an epoch in which a scalar 

field known as the ‘inflaton” slowly rolled down a flat potential. The problem with this 

approach is that it typically involves fine tuning of microphysical parameters entering the 

scalar potentials of the fields whose slow rolling drives the inflationary transition. Since 

inflation is supposed to solve fine tuning problems, the advantages of these models are 

not altogether clear in this respect. 

Such considerations led La and SteinhardP to return to the original version of inflation 

proposed by Guth,’ i.e., where inflation wed driven by a first-order phase transition 

in which a scalar field, initially trapped in a metastable vacuum, escapes via bubble 

nucleation. 

As is well known, the problem with first-order transitions for inflation is that values 

of the bubble percolation parameter l = x/H’ ( w h ere X is the bubble nucleation rate 

per volume and H is the Hubble parameter during inflation) that allow for sufficient 

inflation, do not allow for completion of the phase transition. That is to say, the true 

vacuum never percolates.5 La and Steinhardt were able to avoid this problem by using 

a Jordan-Brans-Dickes theory of gravity which allows power-law solutions for the scale 

factor a(t) in a false-vacuum dominated epoch. This makes the percolation parameter e 

a function of time, so that it can start small enough to allow for sufficient inflation, but 

then grow large enough so that the true vacuum percolates. This version of inflation is 

known as “extended” inflation. 

Unfortunately, it was soon pointed out7 that extended inflation also ran into problems. 

The size distribution of the bubbles formed in extended inflation was found to be nearly 

scale invariant. This gave rise to an overabundance of large bubbles which could not have 



thermal&d their walI energy by the time of nucleosynthesis or recombination unless the 

Brans-Dicke parameter w (w + 00 is the general relativity limit) was smaller than O(20). 

Since experimentallys it is known that w 2 500, it is clear that there was a problem! 

Many models of extended ingation have been constructed since;@ some of them meet 

all of the observational requirements. However, it is safe to say that none of them are 

simple and natural. In particular, none of them are compelling from the point of view 

of either particle physics or general relativity. For example, Brans-Dicke theory is not 

regarded as a fundamental theory of itself, but rather, it is usually considered from the 

point of view that it represents an approximation of some unified theory. 

It is our aim in this work to provide a class of models of extended inflation that comes 

closer than previous ones in achieving the goals of simplicity and motivation. We wilI use 

the dilaton of hidden scaIe invariance to play the role of the Jordan-Brans-Dicke field. 

The previous exploration of these models have been motivated by an attempt to solve the 

cosmological constant problem” or to construct models for slow-rollover inflati0n.r’ Here 

we take a different approach and see whether these models can lead to a natural extended 

inflation scenario. We will be able to avoid the bounds on the (effective) w parameter 

coming from the solar system experiments by using the conformal anomaly to give the 

dilaton a mass. We will also show that under some (relatively generic) circumstances the 

extended inflationary phase can set up initial conditions in the dilaton field and generate 

a second phase of slow-rolloserinfIation! The number of e-folds in this second inflationary 

phase can be controlled by varying the bounce action Sx for the “inflator? field 4 that 

generates the extended inflationary phase. 

In the next section, we discuss ctome basic facts about scale and Weyl invariance; 

in particular, how to construct theories embodying these symmetries. We also discuss 

the conformal anomaly and how it can be made to give the dilaton a mass. In Section 

III we employ the non-linear realization of scale invariance, made possible by use of the 
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dilaton, to construct a scale-invariant theory containing an inflaton field whose potential 

admits a metastable ground state (together with a stable one). We then show that this 

theory naturally admits extended inflationary solutions, and find restrictions on the so- 

called dilaton decay constant from the demands that there be no large bubble problem or 

excessive density fluctuations. Section IV addresses the question of whether the dilaton 

itself can give rise to second round of inflation (slow rollover this time). We find that it 

can and this can be used to change the density fluctuation spectrum in interesting ways. 

We conclude in Section V. There are two technical appendices. 

II. HIDDEN SCALE INVARIANCE 

As pointed out by Buchmiiller and Dragon, lo the standard model is almost scale invariant, 

except for the mass parameter that determines the Higgs doublet expectation value. 

This feature is also present in many unified theories. Thus, it may well profit us to 

study unified theories like the standard model, but with a non-linear realization of scale 

invariance added to the theory. It is this procedure that we describe in this section, 

mostly for the sake of completeness of the exposition (see also Ref. [12]). 

Recall the scaling transformation law for a scalar field 4: under the transformation 

2 + e%, 4 transforms as 

+(a~) -9 e”#(e”z.). 

If Q is taken to be ir&nitesimal, this transformation becomes: 

(2.1) 

6s[4] = a( 1+ z * a)4. (2.2) 

Consider a monomial such as m tsddd that might appear in the potential VO(~) for 4. 

Applying our transformation law to it we find: 
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6~[in:-~d~d] = (d - 4)mieddd + &(~“m~-~~~d). 

Thus, the non-invariance of this monomial under scale transformations is clearly due to 

the fact that the mass dimension of the coefficient rnied of the monomial differs from 0, 

which is no surprise. 

We may realize scale invariance in a non-linear fashion by making use of the dilaton 

Q, the Nambu-Goldstone boson of spontaneously broken scale invariance, to make the 

monomial appear to have dimension 4. This is done by having c transform as follows 

under a scale transformation: 

S&Y] = f + 2 - Lb. (2.4) 

As is usual for Nambu-Goldstone bosons, this transformation law is inhomogeneous. The 

parameter f is the dilaton “decay” constant, in analogy with the case of the pion. We 

will take it to be near the Planck scale. 

We may now use the dilaton to make rrzlSd d s 4 scale invariant. Consider the quantity 

exp(u/f). Under a scale transformation, we have 

&[exp(fllf )I = (1 + 2 .a) exp(ulf ). G3) 

Thus exp(o/f) transforms as a field of scaling dimension 1, i.e., as a regular scalar field. It 

is now easy to see that mimddd up[(4 - d)u/ f] is scale invariant (up to a total derivative): 

&[m:-d#d=pexp((4 - d)c/f)] = (4 + 2. L9{m:-de5dcrp[(4 - d)alf]} 

= 8~ {zxm~mdqSdexp((4 - d)o/f]}. (2.6) 

We see then that if Ve(d) is a polynomial potential for d, a scale-invariant potential 

Vsr(+,a) can be constructed from it by taking every parameter of non-zero mass dimen- 

sion d, and multiplying it by exp[du/f]. This is equivalent to the potential 

Vsr(4,4 = exp(4olf 1 Wexp(-n/f Ml. (2.7) 
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We define a new scalar field 3 z exp(-u/f)4 with scaling dimension zero such that the 

scale-invariant potential can be written as 

&(& 4 = exp(4ulf) vO(6)G (2.8) 

In order to construct a scale-invariant theory, we must also deal with the kinetic term 

of 4, as well as that of the dilaton. It is easy to see that the canonical 4 kinetic term, 

proportional to (a&)‘, is scale invariant as it stands (formally, this may be seen from the 

transformation law: Ss[O&] = (2 + z *8)(8&), which can be easily be proven). However, 

since the scale-invariant version of the potential for +4 naturally involves 4, one can ask 

if there is a kinetic term for 4 that also involves 4. Such a term does in fact exist and is 

associated with Weyl transformations. 

If we embed our theory in a background spacetime described by a metric gIIy, we 

can demand that the resulting theory be invariant under local resealings of the metric: 

gP -+ gL = exp[2y(z)] g,,,,. In order that the potential term fi Vs,(cr,qS) be invariant, 

we demand that c and 4 transform as 

4’ = expi-7(=)14 
u’ = u-f7(*). (2.9) 

The 4 kinetic term is not Weyl invariant. However, if we make use of a,,(a/f) as a gauge 

field for Weyl symmetry we can write down a covariant derivative for 4: 

D,4= 8,4- U~/f)4. (2.10) 

This equation can also be written as exp(o/f)S,,& 

It is clear that D,,4 transforms covariantly under a Weyl transformation: 

DL4'= exp(-7) D,4. (2.11) 

Thus, the kinetic term 
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Gin = +s”DA&4 (2.12) 

is manifestly Weyl invariant and clearly involves 4 only in the combination 3. Thla is 

the term used by Buchmiiller and DragonlO in their work. Therefore we may make the 

choice of two scalar fields, 4 and 4, for the dynamical degree of freedom. Both choices 

reduce to the original theory in the limit that o + m. The Lagrangians for the two 

possibilities are 

L; = d=ii (5++ ~P(2~lf)MG - exP(4olf)VD(n} 

L* = 16 (s’~8r4~v4 - exp(4olf)~[exp(-~/f)4)1}. (2.13) 

Although these Lagrangians in general describe different dynamics, either choice will 

result in the same cosmological model for extended intlation as we show in Appendix 

A. In the following we use L; as it more closely resembles previous models of extended 

inflation. The form of b(4) we use will be discussed below. 

So far, we have concentrated on making the 4 sector scale invariant. It is not clear, 

however, that the dilaton sector of the theory or the gravitational sector of the theory 

need also be scale invariant. It could well be that the scale invariance is an “accidental” 

symmetry of the matter part of the action but not of the full action. If we were to choose 

a scale-invariant kinetic term for the dilaton and for gravity, it would take the form 

&it, = Ai (- e4-2ulf) 16,Rc, - ~~~~IexP(~lf)l~~[e~p(~/~)l} . (2.14) 

In Appendix B we show that this choice of a scale-invariant L-6, will not lead to 

extended inflation. 

It turns out that our purposes are better suited by the choice of a nowscale-invariant 

dilaton kinetic term, as well as a non-scale-invariant coupling to gravity. The combined 

gravity-dilaton part of the Lagrangian will therefore read: 
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L ;.+, = J-s (- 16rflGN + ;gy&ua,u> . 

The total Lagrangian &.t.r = L; + L,et, can be rewritten via a Weyl resealing of the 

metric to yield a Jordan-Bran.+Dicke model. 

We should note the possibility that quantum corrections from the non-scale-invariant 

sector could feed in to the scale invariant matter sector, breaking the scale invariance 

explicitly. This can, however, be avoided by keeping both the dilaton and the gravity 

sectors as classical backrounds, thus preventing their quantum effects from being felt 

by the matter sector. In order to do this, we must restrict our use of this description 

of scale invariance to scales far below the Planck scale (we thank D. Kosower for this 

observation). 

This is all very well for a classically scale-invariant theory. However, it is well known13 

that quantum effects break scale invariance by the explicit use of some form of a regulator 

mass. The effect of this anomaly is to induce a mass for the dilaton, in much the same 

way as QCD instanton effects together with the chiral anomaly induce a mass for the 

axion. 

In order to calculate the dilaton mass generated by quantum effects, we will construct 

a local term involving 4, and cr, whose scale variation yields the conformal anomaly. We 

concern ourselves only with the non-derivative part of the anomaly, partly since these 

are the terms that induce a potential for Q and partly since the other terms consist of 

higher derivative and/or curvature terms that are irrelevant to our discussion. 

Let us compute the one-loop effective potential for 4 coupled to the dilaton. As is 

usual in theories involving non-linear realizations of broken symmetries, we treat the 

Nambu-Goldstone boson field as a ckwsical background in any computation involving 

loops of other fields. Now in order to compute the one-loop effective potential for 4, 

we must compute the determinant of the second functional derivative of the action with 



respect to 43’ 

PSI49 4 
o(zfy) = 64(2)64(y) 

= 1 - 4 + exp(4fllf) &v,ca 1 6’(2 - Y). 

Note that this operator is the same regardless of which kinetic term (Weyl or just scale 

invariant) is chosen. This is because the dilaton field is being taken as a constant back- 

ground field here. Note that we are also only considering a flat background, since the 

terms involving the curvature tensor contain only higher derivatives.‘s 

Converting the 4 derivatives to 4 ones, the operator O(z,y) becomes: 

o(z,Y) = [--a, + exp(2o/f) Vl(&] b’(z - y). (2.17) 

From this, the one-loop correction to the potential can be read off?’ 

(2.18) 

where p is a regulator mass scale. In order to complete our calculation of the effective 

potential, various renormalization conditions must be imposed on the parameters of the 

potential. We will assume that this has been done in the sequel so that all parameters 

are the renormalized ones. With the following definitions: 

A(& = [2/(8#1[Q”(&la 

V(4) = h(4) + AK-I&~, 0 = o), (2.19) 

the potential including the relevant part from the anomaly reads 

%b) = =~(4o/f) [V(4) + A(4);] + A, 

where A will be adjusted to give P = 0 at the true minimum of the potential. Note that 

V(J) is simply the l-loop potential ignoring the dilaton. 
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As we are interested in a potential for first-order phase transitions, we will assume 

that there are two extrema for this potential, a false-vacuum value assumed to be 4 = 0, 

and a true vacuum value, denoted as (4). Given the potential of Eq. (2.20) for Q, it is 

easy to compute the dilaton vacuum expectation value (o), mass m,, and A’s Defining 

m$ z &“((J)), we have then: 

dv((ik4 f---- 
da o=(‘T) 

= 0 * (u) = -;i - Arq)) 

W(4),4 
du” .Y=(lT) 

=mz =a m:=exp[-1-4pr/A((J))]& 

p((&, (4) = 0 * A = exp [-1 - 4~rlA(($))] 2, (2.21) 

where we have used the fact that A(($)) = Zm~/(8a)‘, and we have defined PT E V((4)). 

We will be interested in the potential at three stages. The first stage is during 

extended inflation, when 4 is anchored in the false vacuum, 3 = 0, and V($ = 0) = pv. 

In this stage the potential is 

W,o) = exd4alf) 
[ 
PV + (8~)2 -[v”(o)]‘;] Sexp [-I - 4mlA((?))] &.(X22) 

The next era is when the 3 field tunnels from its false-vacuum value to 4 = (4). We 

will assume that during this era o is constant but has not reached its true-vacuum value. 

The final epoch in our analysis will be after the phase transition has completed but cr 

is still evolving to its ground state. This can be an epoch of slow-rollover inflation. The 

relevant potential during this period is 

Kdd = f?(i$,u) = & ~XP [-f - 4~r/A((&,] 

x [SUP [4b/f + 4p~lA((J)) + I] (4 + -$&) + I] . (2.23) 

We now turn to the study of the two periods of inflation examining the extended 

inflation phase in Section III, and then turning to the slow-rollover phase in Section IV. 
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III. THE EXTENDED INFLATION ERA 

Consider the epoch of extended inflation when 3 is anchored in its false-vacuum vslue 

4 = 0, and o is evolving. Recall that the action for the theory is 

+ ;pB,aa,u + ; exp(2u/f)g”a,~&~ 

1 - exp (-1 -4p~/A(($))) ? . (3.1) I 
We will now show that this action can give rise to extended inflation. 

The cosmological equations of motion coming from this action can be written as 

aP(J u) 
:+3$+2$$ = -exp(-20/f) ai 

ii+3% = 
a 

;[exp(2u/f)$-45(&o)-exp(4rr/f)A(&}. (3.2) 

We take the initial state to be such that 4 is trapped in the metastable minimum at 

4 = 0. It can be checked that the high temperature corrections wilI allow this.‘* Then 
L z 
4 = 4 = 0 and V(O,o) is as given in Eq. (2.22). Then OUT equations of motion reduce to 

+; = [pv+A(O);] +A} 

*+a;‘+ = -+@a/f) pv + A(o) ?? +’ I If 411. 
(3.3) 

Now, these equations with A(0) = A = 0 will give rise to extended inflationary 

soIutioncY for L = 0: 

a(t) = a(O)(l+ B)“P 

u(t) = a0 - ; ln(1 + Bt) 

Ba = 8 

f^1(3*F - 1) 
exp(4oo/f )E 

Mi 
(3.4) 
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where we have defined f G f/Mp, where Mp is the Planck mass. Thus, we see that as 

long as 

I I A(O)” < PV f 

we will have extended inflation with the above solutions. Since A(0) is the result of 

the one-loop potential, it is naturally supressed by a factor 32x1 relative to tree-level 

quantities such as pv. Therefore the necessary inequalities are expected to be satisfied 

naturally. 

Given that our theory can induce an extended inflationary epoch, we must now, check 

that (i) this epoch lasts long enough to solve the cosmological problems, (ii) that the 

large-bubble problem is avoided, and (iii) that there be no excessive density fluctuations.” 

Since the results obtained in Refs. (7, 16) were presented in terms of s.n effective Jordan- 

Brans-Dicke theory, we convert our theory into such a model. The main result we will 

need is that the effective JBD w parameter in our theory is given by: w.,r E 2np - 3/2. 

The constraints on our model can be written either in terms of w.x or f. 

First, we demand that the theory actually inflate. This then requires that E/a > 0, 

which in turn implies that rf2 > 1. We will defer to later the enforcement of the 

constraint of having suiXcient inflation. In order to solve the large bubbles problem, the 

analysis of Ref. (7) requires that we take wd 5 20, or vrf3 5 10. The density fluctuations 

analysis of Ref. (18) demands that if these density fluctuations have anything to do with 

galaxy formation, and that there be no excessive density fluctuations, then wa 2 10, or 

rf3 3: 6. This constraint may actually be weaker than it seems, since if the second slow 

roll over period of inflation (to be discussed in the next section) occurs, these density 

fluctuations may be inflated away. It may also be weaker if #/Mp is smaller than typical 
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GUT scales of 10-s. However, since this need not occur, we include the constraint here. 

To get sufficient inflation, we must fmd the time t,d at which inflation can be said to 

be over. In the extended inflation scenario, inflation ends when the percolation parameter 

c = A/E’ attains its critical value, which we take to be of order unity (see Ref. (5) for a 

more careful assessment of this value). Using the results in Ref. (17), we find that 

44 = (*$B), exp(4mlf )(l + Bt)‘, 

where X0 is the bubble nucleation rate computed when u = const = 0. The above equation 

needs some explanation. In Ref. (17), we calculated the nucleation rate assuming that 

the tunnelling happened only in the 4 direction, i.e., Q = const. We have also assumed 

this here. However, here we are not taking the Brans-Dicke theory to be the fundamental 

one. Thus, this assumption cannot be justified by use of the approximations of Ref. (17). 

There, the Brans-Dicke kinetic term could be neglected along with the R&i scalar term 

since both terms were proportional to ~/GN and thus decoupled from the action in the 

zero-gravity limit. Here we must also take the limit f + 00. With the resealing g = u/f, 

the dilaton kinetic term becomes f’g’LJ,,Z&~, which decouples tram the action in the 

f + m limit. It is in this limit that the dilaton will remain constant during tunnelling. 

This approximation is necessary as the two-field tunnelling problem is currently beyond 

our capabilities to solve. 

Another comment that needs to be made here concerns the choice of the kinetic term 

for the 4 field. Since we again must compute various functional determinants of operators 

involving this kinetic term, it would seem that it might make a difference which one (scale 

or Weyl invariant) was used. However, we have already assumed that tunnelling proceeds 

only in the 4 direction, i.e., that the dilaton field is taken to be constant during tunneling. 

Thus exp(o/f)@ = 6’4 in this limit. Therefore, there is no difference between the two 

kinetic terms in the Euclidean bounce; the nucleation rates will be the same. 
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getting c(t& z O(l), we find: 

1+ Btd = Elr’exp(2us/f) (3.7) 

This immediately yields the number of e-folds in extended inflation: 

Na+~=ln(f$f) =7r~~n(,~~‘,)+2ln($-)+++~] (3.8) 

where we have written pv = p’ (p is the mass scale of theinflaton), and As N pv exp(-SB). 

A plot of the number of e-folds of inflation during the extended inflation era is shown in 

Fig. 1 as a function of Sn + 400/f for f = l/2, 1, and 2. We can see that it depends 

linearly on Sg + 4u,Jf, and approximately quadratically on f. 

The sufficient inflation constraint can be written as: 

(1 + B&@ 2 eo6. 

Taking the log of this yields the relation 

(3.9) 

(3.10) 

Given the bounds on f and initial values for Q, this gives a relation between the vacuum 

energy density and the bounce action Sn, which can be satisfied without fine tuning. 

We see then, that under the assumption that the anomaly term can be neglected 

during this epoch, extended inflation can occur for rp in the range from 6 to 10. This 

implies that f must be almost equal to Mp (actually, slightly larger). We do not take this 

as evidence of a fine-tuning problem for the following reason. The theory we have written 

down is an effective theory incorporating the effects of the breaking of scale invariance 

by use of the dilaton. The correct theory will have a particular value of f. If it is in 

the appropriate range, extended inflation will occur; if not it won’t. Since we do not 

know how to construct the more detailed theory our model is supposed to represent, we 

content ourselves with finding the conditions under which extended inflation can occur. 
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For completeness sake, and for use in the next section, we will restate the results 

from Ref. (18) concerning the adiabatic density perturbations generated by fluctuations 

in the dilaton field during extended inflation. The density perturbations generated from 

bubbles are assumed to be small, since most bubbles are nucleated near the end of 

extended inflation. The slow-roll approximation is also used. In Ref. (lg), it was stated 

that this approximation is valid in the large w limit. However, since wa c 2x? - 312, 

and 1 can be as small as l/2, we must be more precise. We can check to see when 

the slow-roll conditions are satisfied in extended inflation. These are ii &: 3eij.r and 

&‘/2 < V. Using the Eqs. (3.4) for o, a, and B, we find that these conditions become 

I5/(3G/a)j = l/(3*?) < 1 and I(b-‘/2)/(pvexp(4a/f))l = 1/(3x? - 1) Q: 1. The 

smallest f can be is the minimal amount which is needed for inflation to occur: rf3 > 1. 

Using p = l/x, we see that the slow-roll conditions are only marginally satisfied. For 

f 2 1, however, they are clearly satisfied. 

Assuming that the slow-roll conditions do hold, we can calculate the density pertur- 

bations generated. As it has already been done in Ref. (18), we will only outline the 

relevant calculations. At horizon crossing, the density contrast isIB 

6p HZ -=- 
p &. 

(3.11) 

Using the slow-roll equations of motion, 386 = -V’ and Hz = 8rG~V/3, we can rewrite 

this as 

6P 8% 
-= 

( > 

=rJ (V)Jl’ 

P 3ziJ 7’ 
(3.12) 

Using the fact that the extended inflation potential is V = pv exp(4a/f), and using the 

expressions for a(t) and Q from Eqs. (3.4), tie find that 

(3.13) 
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We would like to relate the time that a scale crosses outside the horizon with its co- 

moving size A. The distance to the horizon is about H-l. In addition, the physical size 

of a scale increases linearly with the scale factor of the universe. Since the physical size of 

a scale grows much faster than H-‘, a scale A leaves the horizon when X a(t)/a(O) N 61-l. 
Using the expression for a(t), the horizon-crossing for a scale A occurs when (1 + Bt) N 
(Brf3X)-1/(w~-1). Putting this into our expression for bp/p, we thus find the expression 

for the density perturbation as a function of the co-moving scale X: 

6P ( ) 7, 
(x Al/ (3.14) 

where the proportionality constant depends on f. We will use this result in the next 

section. 

IV. EVOLUTION OF THE DILATON IN THE 

POST-EXTENDED-INFLATION ERA 

After extended inflation is over, the dilaton field will in general be displaced from its 

ground state at (u)/f = -l/4 - pr/A((J)). In fact, we can compute the value of the 

dilaton at the end of the extended inflationary period. Recall that during extended 

intlation Q has the following time dependence: 

u(t) = a,, - ; lx@+ Bt). 

Thus, we can use our result for 1 + Bt d derived in the previous section to compute 

a(&). Doing this yields 

(4.2) 
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where, a&n, X0 is the nucleation rate when Q = 0. Note that ~(t.,d) is independent of the 

initial value of o prior to the onset of extended inflation. It is very interesting to estimate 

a value for o(t&. Clearly the argument of the logarithm of the first term in Eq. (4.2) is 

of order unity and can probably be ignored. If we choose a mass scale p for the inllaton, 

then pv - P’, ,xo - IC’ =~(-%a), and Q(&d)/f - -1.09 + ln(Mp/p) - S~f4. N&v if 
we make the traditional assumption that p - lO”GeV, then v(t,d)/f - 10.4 - Sn/4. 

Picking a value for Sg is a much riskier enterprise than guessing a value for cc. Since Sx 

is positive, clearly ~(t.,,,t)/f cannot be too large a positive number. While in principle it 

could be a very large negative number, it would be just as reasonable to pick Sg = O(20) 

which would result in u(t&f) = 0(+5). 

Now the natural question that arises at this point is how quickly does the dilaton 

field reach its minimum value? If it does so quickly enough and radiates its potential 

energy efficiently enough, then nothing of any cosmological significance takes place due 

to dilaton evolution. However, there is also the possibility that the dilaton alowly rolb 
to its minimum, allowing for a second inflationary era. It is this possibility that we wish 

to explore here. 

What conditions must be satisfied for the dilaton to induce this second epoch of 

irtgation? First, the dilaton potential energy density must exceed that of the sur- 

rounding radiation field generated by bubble collisions at the end of extended itis- 

tion. Since bubble collisions may be rather efficient at reheating the Universe, we expect 

that PR = -T@(&d)/f]PV. Thus, our first condition for slow roll to begin is that 

W44) B =xp(4u(t~)lf)pv(a(tmd)la(t))’ h w ere i&(u) was defined in Eq. (2.23). 

Numerical integrations of the equations of motion show that if radiation has this form, 

it only dominates for a small amount of time. 

Our second constraint is that the slow-roll conditionsa must also obtain. In general, 
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these read: 

i I 
m 24x 

Kl? <@ 

I-l 

V&(u) < G 
Vd 

-. 
MP (4.3) 

Applied to our potential as given in Eq. (2.23), we arrive at the following conditions: 

1+ 28/f 3* 7 
exp(-1-48/f) +4&/f < Tf 

1+ 4alf 
exp(-1 - 4cT/f) +48/f < (3x)1”f (4.4) 

where we have shifted the dilaton field to a/f = u/f + pr/A((J)). When one of the 

these conditions is not satisfied, slow-rollover inflation ends. A graph of V&(u) is shown 

in Fig. 2, and the regions where the slow-roll approximations are not valid are indicated. 

Note that if Q slowly rolls on the flat side of the potential (i.e., c < (u)), an excessive 

number of e-folds of slow-rollover inflation results, erasing any memory of the extended 

inflation era. 

Given all of the above information, we can compute all of the relevant quantities for 

the slow-rollover inflationary era, such as the number of e-folds, the density fluctuation 

spectrum, and the reheating temperature. 

The number of e-folds is given by 

&.-ton = I ” &H(t) = -$ /” da $j$ 
:i ai 

= -2x? J=’ & 
42 + exp(-1 - 42) 

.i 1+42 ’ (4.5) 

where z = b/f. Here iii and @f are the values of the dilaton field at the beginning and the 

end of the slow-roll phase. In order to actually calculate Nhr-d, we need some more 

information. The problem is that *i depends on quantities such as the bounce action, 

pv, p=/A((&) and f. Let us assume some values for some of these quantities. We take 

f = 1 and pi = 0 as an example. Then @ = u. We can find numerically the value of 
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u/f for which the slow-rollover conditions break down. This yields zf z u/f N -0.38 

for u/f < 0, and zf ‘v $0.025 for u/f > 0. The value for Zi E Vi/f may also be found: 

Zi ‘L -l.OS+ln(Mp/p)-Sn/4. Tahingp z 10” GeV, say,wefind that zi N 10.4-Sn/4. 

As an example, if we take SE = 20, we find that N&“-d = 30. Thus, by varying the 

bounce action we can obtain differing amounts of e-folds during this phase. A graph of 

N,t--d versus Sn for the above choices of p and pr, and for f = 1 and 2 appears as 

solid lines in Fig. 3. Also shown as solid dots are the number of e-folds of inflation found 

by the result of numerical integration of the equations of motion. We should note that if 

this slow-roll phase occurs, the constraint that we have at least 65 e-folds during eztended 

inflation is obviated. 

Next, we compute the density fluctuation spectrum for this phase. The density con- 

trast at horizon crossing is given in Eq. (3.11). Using the slow-roll equation of motion 

for u and the relation between Ha and Vd as in Eq. (3.12), we may write this as 

= ?& (~)‘exp(-l/2 - %vlA((&))expP(ux - (4)/f] 

x [4(ex - (u))lf - 1 + exp[--4(uA - (u))/f]]‘/’ 
(a- (3)/f 

9 

where we have used the expression for Vd in Eq. (2.23), and the fact that (u)/f = 

-l/4 - p=/A(($)). Here, us refers to the value of u at the time the physical scale A 

crossed outside the horizon, as discussed in Section III. We see that the scale for the 

density contrast is set by the quantity 

( 1 F ~ o( exp[-l/2 - 2pr/A(($))](x~)“’ (2)s. 

Wt see then that for pi 2 0, and tahing m; N 101’ GeV, these fluctuations are rather 

small. However, their magnitude can be enhanced in theories where pi < 0. In fact this 

cm be used to place a constraint on how large (and negative) pi cm be. 
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In the previous section we found that (6p/p)x cc X’It*f?-l) or that log(bp/p)A = 

const + l/(rf- - 1) log X in extended inflation [Eq. (3.14)]. It will also be true in slow-roll 

inflation that log(bp/p)x = const + l/(trf? - 1)log X, with a different additive constant 

but with the same slope, l/(xp - 1). Th e reason for this is the following: the slow-roll 

potential, V(u), is proportional to [uexp(4a/f)], rather than to [exp(4u/f)] as in ex- 

tended inflation - the new feature here being the multiplicative factor u. From Eq. (4.6), 

V’/‘/V’ 0: [#‘exp(2u/f)] during slow-roll inflation. But [exp(2u/f)] is an exponen- 

tially steeper function than [&‘I. Thus we are justified in ignoring the time-dependence 

of [d/‘] relative to [exp(2c/f)] in calculating the slope for log(bp/p)r versus log(X) in 

slow-roll inflation. Thus the power of the scale X will be very nearly the same in extended 

inflation and slow-roll inflation. Numerical integrations confirm this, as can be seen in 

Fig. 4. 

We must now calculate the relative magnitude of the ratio of adiabatic density fluctu- 

ations formed during extended inflation and those formed during slow-roll inflation. First 

we define Xt to be the co-moving scale which defines the end of extended inflation and the 

beginning of slow-roll inflation. Assuming that the slow-roll conditions hold continuously 

during extended and slow-roll inflation, we can calculate bp/p evaluated at Xt for both 

of these inflationary periods. 

Since we have asssumed that u is constant during tunneling and reheating, we can 

calculate this quantity as in Ref. (18). Taking as an example pi = 0 and u > f/4, we 

then have 

(JPlP) A, da-roll = fi (s)“’ (a(tJl)=xp(4q)~)1” 

(6PlP) A* extem-id = f; ($)“’ (=xp(4a,lf )Pv)“‘. (4.8) 

Using Eq. (4.2) for the expression for a(&), and substituting in X0 = pv exp(-Sn) = 

p’ exp( -.9x), us, becomes: 
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uAr=-;h(3yl) -h(-&)-+. 
Taking f ‘v 1 in the weak dependence of the log term in the above expression for ux,, 

and using the fact that A(($)) = 2mS/(&r)‘, we tlnally end up with 

tap/P) A, uteri--id wwPc/m~)’ 

(JPlP) = A. do.-rdl 1 - 2.19 - 4ln(p/Mp) - Sn[t/” 
(4.10) 

Thus we see that we can have more power on large scales by setting the above ratio 

greater than I. Using only the constraint that Sn > 0, this is easy to satisfy. 

In Fig. 4, we plot the density perturbation spectrum for the case of p = lO”GeV, 

m;/lp = 2.86, f = 1.5 and Sn = 25; the above ratio equals 1 in this special case. We 

can see from the plot that the beginning of the slow-roll period of inflation does not 

satisfy the slow-roll conditions exactly-the curve attains a constant slope only after a 

few e-folds. But the density perturbations formed during the initial onslaught of slow-roll 

inflation are expected to be heavily dependent on the effects of reheating from bubble 

collisions, which we have ignored anyway. WC thus cannot be too sure at present about 

the dependence of bp/p on X at the beginning of slow-roll inflation. 

Extrapolating the constant slope part of the slow-roll density fluctuations back to 

A = At gives us (c~P/P)A, utu-in%. In addition, Sp(&)/p is defined as the value of bp/p at 

the beginning of slow-roll inflation, which depends on the effects of reheating as we have 

already discussed in the previous paragraph. The squiggly line is drawn in to represent 

the presently uncalculated density perturbations generated from bubble collisions on the 

scale At. In the most general case of SE and m;/p, the two curves will be displaced from 

each other at XC (neglecting the initial slow-roll behavior), even though they will have 

the same slope of l/(x? - 1). 

Thus we have seen that the larger scales leave the horizon during extended inflation, 

while the smaller scsles leave during slow-roll inflation. Futhermore, even though the 
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perturbation spectrum for each inflationary period is roughly scale invariant, the mag- 

nitude of the fluctuations can be very different for each. This leads to the natural idea 

that we can have more power on large scales. We must be careful, however, not to put 

too much power on these scales so as not to come into conflict with measurements of 

the temperature fluctuations in the microwave backround at large angular separations. 

We see then that the combination of the two inflationary phases lead to natural udouble 

inflationary” spectra studied earlier.l’ 

Finally, we compute the reheating temperature of the Universe due to the decay of 

the dilaton. First, we note that the dilaton can couple to a massive Higgs scalar (such 

aa the colored Higgs triplet of GUT models) or to fermions with bare mass terms. The 

reason the fermions must have a bare mass is that Yukawa couplings between fermion 

and bosons are automatically scale invariant. Thus the dilaton would not couple to such 

fermions. We will consider the bosonic case here for concreteness. If x denotes the Higgs 

boson under consideration, and mx its mass, then the dilaton will couple to x as follows: 

-Lk, = m:x’exp(Zu/f) = ~X’C + . . . . (4.11) 

Thus, the dilaton can decay into two x’s as long as the this decay is kinematically 

allowed, i.e., m, > 2m,. For rn~ in the GUT range, this requires that m, be less than 

about 10” to 10” GeV. This is not a very stringent requirement, even if x represents a 

color triplet that can mediate proton decay (and hence baryogenesis, depending on CP 

violation parameters).” 

What must be checked now is whether the reheating process is fast or slow. The 

decay rate for the dilaton is given by 

r=‘“i 4ma 
e - 1-x. 

a* f%no I- m: 
(4.12) 

Using m, 2: lO”rGeV, m, u lO”GeV, we find that I’,/H 2~ 10-s < 1 so that reheating 

proceeds slowly here and the reheating temperature is approximately equal to’s 
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Ti N m N IOsGeV. (4.13) 

Although this temperature seems low, one can still generate a baryon asymmetry via the 

=way out” of equilibrium decays of the dilaton into Higgs colored triplets.a* 

V. CONCLUSIONS 

From our calculations above, we see that theories with scale invariance realized in the non- 

linear mode csn be used to construct a large class of theories which can undergo “safe” 

extended inflation. Little if any fine tuning required to solve the standard cosmological 

problems or the problems associated with extended inflationary models. Furthermore, as 

we saw in the previous section, extended inflation via hidden scale invariance can be used 

to set up initial conditions for a second phase of slow-rollover inflation. The combination 

of the two inflationary phases might be able to give rise to “designer” density fluctuation 

spectra, but in a far more natural way than has been done previous1y.r’ 

The only “fly in the ointment” that we see with this class of models is that we 

do not know how to construct the larger theory (with the spontaneously broken scale 

invariance restored) of which our models are effective parametrizations. It would be nice 

to know if there is some class of scale-invariant theories that can give rise to a non-scalc- 

invariant gravitational Lagrangian such as the one we appear to need in order to make 

our scenarios work. However, we expect that this will only be accomplished once we 

have a more detailed understanding of gravity at short distance scales. What we con 

say however, is that if we want to construct itiationary models that perform the tasks 

they were constructed to perform without any extreme fine-tuning, then we should take 

models with hidden scale invariance very seriously. 
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To conclude then, we have constructed a large class of models that realize extended 

itiation in an extremely natural fashion. As long as there is a field in the theory with a 

suitable potential, i.e., with a metastable false vacuum state, extended inflation will occur 

with none of the problems usually associated with inflationary models. These models are 

proof positive that the inflationary paradigm can actually be realized in practice. 
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APPENDIX A 

In this appendix, we will show that the extended inflationary equations of motion derived 

from either inftaton Lagrangian in Eq. (2.13) are the same. This is an important result 

since, a priori, there is no reason to choose either one. 

The equations of motion derived from the lagrangian JZ; are given in Section III. We 

will now derive the equations of motion obtained from I$, where 

& = J-s (P+%#W - exp(4~/f)~[~xp(-~/f)~)l}. (A.11 

In Section III, we found extended inflationary solutions to the equations of motions 

when we assumed that the vacuum energy density pv was the dominant form of energy, 

and nglected the anomaly and cosmological constant terms. We also set 4 = 0. This 

we did by setting the metastable minimum for the potential at 4 = 0 and seeing that 

high temperature effects could allow for this. Thus it is important here to determine the 

potential (with l-loop corrections) so that we may find its value of 4 in its metastable 

minimum. Fortunately, the potentials are equivalent, and thus both minima occur at 

4 = exp(-o/f)4 = O! We can see this by evaluating the operator tram Eq. (2.16) which 

determines the l-loop corrections. Since the dilaton o, is being taken as a constant 

background field, we end up with the same operator and thus the same l-loop correc- 

tions. Thus, the metastable minimum for our potential, P(exp(-a/fW,a) = up(4o/ 

f) P’(=P(-o/f)& + A(+-vlfM)alfl + 4 occu*s for exp(-o/f)4 = 0. 
Let us write down the entire action, again letting scale invariance be a symmetry only 

of the in&ton sector as we did in sections III and IV. It is 

Sk?, 474 = / d+c J-s (- 16fGN + ~lf”8~&0 + +%w 

-44~lf) [V(exp(-c/f)4 + A(exp(-oir)$] 
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-(g+A((exp(-al@)) exp -l_ 4PT 
2f2 A((exp(-@lf)#)) (A*2) 

We thus find the equations of motion to be 

*+3:+ = 
a 

f [--4P - exp(4o/f)A 

-exp(4alf) (Z + Es)] I (A-3) 

where we have left out the functional dependences: P = P(exp(-o/f)4,a), V = 

V(exp(-u/f)6) and A = A(exp(-~/f)d). Using the fact that 4 = exp(a/f)($+&/f) 

and 4 = =xp(o/f)(;+ 2&-/f +&5/f)’ +$-5/f), we change variables from C$ to 4 in our 

above equations of motion. Then since we are trapped in the f&e vacuum state, we set 

exp(-c/f)4 = 3 = 0. We end up with 

0 y+.$ = - [+P + ; exp(20/f)$ + P(O,,)] 
3 

;+3$ = -2;&exp(-2a/f) 
a?(0 u) 

a; 

*+3Q+ = 
0 j [-4f%o) -=x~(4ulf)A(O)] , 

where we have used the fact that W/au = -JV'/ f, the prime indicating the derivative 

with respect to 4. It is clear that since 4 = 0 and z = 0 are solutions to our equations of 

motion (as they should be in extended inflation!), we end up with the same equations of 

motion as we had previously using La (see Eqs. (3.3)). Thus, our cosmological extended- 

idation solutions will be the same if we use either the Weyl or non-Weyl-invariant 4 or 

4 kinetic terms. 
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APPENDIX B 

In this appendix we would like to show that if all sectors of the theory are scale 

invariant (except for the anomaly term from the l-loop corrections to the potential which 

explicitly breaks the scale invariance of the theory), we do not have extended inflation. 

The action, which has been considered previously in different contexts, is 

+$Y’ex~(2olf)4&%? - =xp(4o/f) [vc?) + At?);] 

-cxP(-l--4pr/A((~)))~}. 

We refer the reader to Section II for the derivation of the above action. We can see that 

this action is olmoat that of the Brans-Dicke theory by making the following redefinition 

of the dilaton field Q in terms of the Jordan-Brans-Dicke (JBD) field @. Setting 

ip= 16;GNexP (2o/J% 

we can rewrite the action as 

% ‘&xl = / d’.r J-s { -QR + wgp apy’ + ;(16nGN@)gW&$ 

-(16rG~@)~ [v(4) + A(~)ln(16nGr,@)‘~s] 

where now w = 2r(f/Mp)‘. Except for the fact that the inflaton potential is now coupled 

to the JBD field, we see that we end up with a Brans-Dicke action. However it is precisely 

this coupling that prevents extended inflation. 

Upon working out the equations of motion in this frame (the so-called Jodan con- 

formal frcrme), we find that they do not lead to sensible analytical solutions. Thus in 

search of simple analytical solutions, we perform a conformal transformation nag, = grvr 
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R = G-‘x - 6D-%D, into the Einstein frame. We then find that Gs = (16nG~iP)-’ = 

up(-2o/f), so that the action becomes 

where 

++,&d - [v(& + +&/&a] 
-~p(-2?b/?h)=xp (-I- 4~vlA(($)))~~ 

I 
, (B-4) 

$ = &h(l6nG~@) = [(3 + 2w)/16nGN]“‘ln(16aGNB) 

= (1 + (3M;)/(4”p))-“%. (B.5) 

Since we are assuming that the false vacuum energy pv dominates the energy density in 

the metastable vacuum at 4 = 0, we will take V(J) = pv, and A(0) = A = 0. We then 

find that $ = G = 0 is a solution to the equation of motion for 4; we are indeed “stuck” 

in the false vacuum as required. We are left with the equations governing the evolution 

of the scale factor and the dilaton. They are 

Ii ’ 

6) a 
+$ = y [$P+pv] 

3;+39 = 0. (B-6) 

Clearly $ = const is not a viable solution, as the JBD field is then constant and we are 

led to Guth’s “old” exponential inflation and the “graceful exit problem.” 
. . 

Since $I = $(O)(u(t)/a(O))-s, the solution for k = 0 is 

a(t) -= 
40) 

wsh J24”GNpy t 
( 

) + (B-7) 

while the Hubble parameter is 

~~*GNPv 
*w = 3 

x sinh(&GGjG t) + 1+@(0)/(2p~)wsh(J~ t) 

cosh(&W t) + 1+ &~)/(2pv)sinh(~~ 1 . (B.8) 
t) 
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Thus, exponential growth is achieved for large t. It is found numerically that even letting 

the arbitrary parameters vary, exponential inflation with $ = constant (or Q = constant) 

is achieved after only a few e-folds. However, since constant r/, leads to a constant Hubble 

parameter, we are driven to sm old inflation type of scenario suffering as usual from the 

graceful exit problem. This result also holds when a more careful accounting of the time 

dependence of the bubble nucleation rate is done.“’ 
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FIGURE CAPTIONS 

Fig. 1: The number of e-folds in ezknded inflation versus S, +4us/f for three values 

of f. Here, Sn is the bounce action and f is the dilaton decay constant. The energy 

scale of extended inflation is choosen to be that typical of GUT scales. Note that a wide 

range of parameters give a number of e-folds in the range 30 to 65. 

Fig. 2: The dilaton potential during slow-roll inflation for PT = 0. Bars indicate 

regions where the slow-roll approximations break down for the indicated values of f. 

Fig. 8: The number of e-folds in slow-roll inflation versus the bounce action Sn for 

different values of f. The curves are calculations using the slow-roll approximations, 

while the dots are the results from numerical integrations of the full equations of motion. 

There is no inflation for SB N 42 because this corresponds to the dilaton starting from 

the minimum of its potential. If Sn > 42, the dilaton started rollover inflation on the 

flat side of the potential, and many e-folds of inflation result. 

Fig. 4: An example of the spectrum of density fluctuations for f = 1.5Mp and Sn = 

25. The fluctuations have a slope 6pjp cx X r/(*?“-r) for both the extended and slow-roll 

inflationary periods. The squiggly line indicates the length scale of the transition between 

the two epochs. Fluctuations formed from bubble collisions and reheating should appear 

around this scale. The density fluctuations from both epochs are shown with the same 

amplitude if extrapolated to the same scale. The relative amplitude actually depends 

upon m;/p$‘. The scale & depends upon the number of e-folds of slow-roll inflation: 

At - exp(N,r,,.-~ - 45) Mpc. In this example N,rOr-r,,u = 48, and Xt N 20 Mpc. 
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